加载中...
您的位置:首页 >资讯频道 > 原创资讯 > 正文

幂函数图像及性质是什么 幂函数的特性是什么? 幂函数的特性介绍

2022-06-30 11:48:29 来源:经济头条

01

幂函数性质:当α>0时,幂函数y=x^α有下列性质:1、图像都经过点(1,1)(0,0);2、函数的图像在区间[0,+∞)上是增函数;3、在第一象限内,α>1时,导数值逐渐增大等。

一、正值性质

当α>0时,幂函数y=xα有下列性质:

1、图像都经过点(1,1)(0,0);

2、函数的图像在区间[0,+∞)上是增函数;

3、在第一象限内,α>1时,导数值逐渐增大;α=1时,导数为常数;0<α<1时,导数值逐渐减小,趋近于0;

二、负值性质

当α<0时,幂函数y=xα有下列性质:

1、图像都通过点(1,1);

2、图像在区间(0,+∞)上是减函数;(内容补充:若为X-2,易得到其为偶函数。利用对称性,对称轴是y轴,可得其图像在区间(-∞,0)上单调递增。其余偶函数亦是如此)。

3、在第一象限内,有两条渐近线(即坐标轴),自变量趋近0,函数值趋近+∞,自变量趋近+∞,函数值趋近0。

三、零值性质

当α=0时,幂函数y=xa有下列性质:

1、y=x0的图像是直线y=1去掉一点(0,1)。它的图像不是直线。

特性介绍

对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:

首先我们知道如果a=p/q,且p/q为既约分数(即p、q互质),q和p都是整数,则x^(p/q)=q次根号下(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。当指数a是负整数时,设a=-k,则y=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞)。因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:

a小于0时,x不等于0;

a的分母为偶数时,x不小于0;

a的分母为奇数时,x取R。